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ABSTRACT 

This study assessed the effects of two widely used powdered detergents in 

Nigeria Omo and Klin on the growth of Chlorella vulgaris over 14 days under 

laboratory conditions. Detergent concentrations ranging from 0 g/l, 3.33g/l, 

6.67 g/l, 10.00g/l, 13.33 g/l and 16.67g were tested. Results revealed that Klin 

stimulated algal growth by up to 25% at optimal concentrations, while Omo 

reduced growth by as much as 45% across most treatments. The stimulation 

by Klin is likely due to its phosphate content, while Omo's inhibition is 

attributed to potentially toxic additives. These findings suggest Chlorella 

vulgaris has potential as an early-warning indicator of detergent 

contamination, though further studies involving more detergent types are 

necessary to confirm generalizability. 
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INTRODUCTION 

Detergents are chemical agents used 

extensively in households and industries for 

cleansing purposes. They typically contain 

surfactants and other additives, such as 

phosphates and enzymes, which help to 

emulsify and remove oily residues 

(Sarmiento, et al., 2015; Gurkok, 2019; 

Babajanzadeh et al., 2019). Once used, 

detergents and the pollutants they release 

often enter aquatic systems (Ekanem, et al., 

2008), potentially impacting water quality 

and ecological balance. 

Among the constituents of detergents, 

phosphorus, usually in the form of phosphate 

can promote eutrophication in freshwater 

systems by stimulating excessive algal 

growth. This, in turn, reduces light 

penetration, lowers oxygen levels, alters pH, 

and ultimately leads to algal death and 

disruptions in aquatic food chains. 

In Nigeria, Omo and Klin are among the most 

widely used detergent brands. Due to their 

popularity, their potential to contribute to 

aquatic pollution through runoff and 

improper disposal is a growing concern. The 

active chemical compositions of these 

detergents may either stimulate or inhibit 

algal growth depending on their toxicity and 

nutrient profiles. 

Algae such as Chlorella vulgaris are key 

primary producers and sensitive to changes in 

environmental conditions. Their growth 

responses to pollutants make them ideal bio-

indicators for aquatic ecosystem health. This 

study aims to evaluate the growth responses 

of Chlorella vulgaris when exposed to 

different concentrations of Omo and Klin, 

providing insights into their ecological 

impacts and the potential for using algae in 

monitoring detergent contamination. 

 

MATERIALS AND METHODS 

 

Materials 

Detergents (Omo and Klin): The Omo 

detergent contains surfactants, sodium 

sulfate, sodium carbonate, sodium silicate, 

sodium aluminosilicate, clay, enzymes, 

perfume, polycarbonates, optical brighteners, 

and polycarboxylates. Klin detergent 

includes linear alkylbenzene sulfonate 

(LABS), sodium tripolyphosphate (STPP), 

sodium carbonate, sodium sulfate, and 

enzymes.  

Test Organism 

A pure culture of Chlorella vulgaris 

(Division Chlorophyta) was obtained from 

the Phycology Laboratory, University of 

Benin, Nigeria. 

Culture Medium 

Chu’s No. 10 medium was used for algal 

cultivation. Macronutrients included 

KH₂PO₄, CaCl₂·6H₂O, MgSO₄·7H₂O, 

NaHCO₃, NaNO₃, and Na₂SiO₃·9H₂O. 

Micronutrients included CoCl₂·6H₂O, 

Na₂MoO₄·2H₂O, ZnSO₄·7H₂O, H₃BO₃, 

MnCl₂·4H₂O, and CuSO₄·5H₂O. Iron stock 

was prepared using ferric citrate and citric 

acid. A vitamin stock (Supradyn) was also 

added. 

Instruments  

UV/Vis Spectrophotometer (Jenway 6715) 

for absorbance readings at 750 nm 

Metler MT-301 electronic balance for 

weighing test substances 

Methods 

Various grams namely: 0g, 1g, 2g, 3g, 4g, 5 

g of each detergent were weighed and 

dissolved in 300 mL (0.3L) of Chu's medium 

in separate culture containers make a 

concentration of 0 g/l, 3.33g/l, 6.67 g/l,/l 

10.00g/l, 13.33 g/l and 16.67g respectively. A 
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4 mL inoculum of Chlorella vulgaris was 

added to each culture container. Control 

setups contained no detergent (0 g/l). All 

treatments were in triplicates and maintained 

under favorable light conditions. Absorbance 

was measured every two days for 14 days. 

Growth rate calculation: 

µ = lnN2 – lnN1 

        t2 – t1 

N1 = initial cell density/No 

N2 = final (measured) cell density/No 

t2 = time at end of experiment 

t1 = time at start of experiment 

Percentage (%) Inhibition = 100 – 

Measured Biomass x 100          

                                                    Theoretical 

Biomass 

  

RESULTS 

The effects of varying concentrations of Omo 

and Klin detergents on the growth of 

Chlorella vulgaris were monitored over a 14-

day period. The growth pattern, growth rate, 

and percentage inhibition were evaluated and 

are presented in Figures 1–6. In Omo-treated 

samples (Figure 1), Chlorella vulgaris 

exhibited an initial exponential growth phase 

from day 0 to day 8 across all concentrations. 

This was followed by a decline, then a slight 

increase in cell density up to day 12, and 

another decline by day 14. In contrast, the 

control group exhibited a lag phase up to day 

8, after which exponential growth occurred 

until day 12, followed by a decrease in cell 

density on day 14. 

Growth patterns in Klin-treated samples 

(Figure 2) demonstrated a brief lag phase 

from day 0 to day 2, followed by steady 

exponential growth until day 8. Thereafter, 

the cultures entered a stationary phase, with 

little to no further increase in algal biomass. 

Control groups showed similar trends. 

 

 

 

 

 

 

       Figure 1: Growth curve of Chlorella vulgaris in Omo detergent 

 

 

 

 

 

    

      Figure 2: Growth curve of Chlorella vulgaris in Klin detergent 
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Figures 3 and 4 display the growth rate of 

Chlorella vulgaris exposed to Omo and Klin 

detergents, respectively. In Omo treatments 

(Figure 3), growth rates initially rose but 

showed considerable fluctuations and a 

general downward trend, From a growth rate 

of  0.045, 0.274, 0.332, 0.349, 0.34 and 0.347 

on day 2 for  0g, 1g, 2g, 3g, 4g, 5 g 

respectively to  a growth rate of -0.379, -

0.145, -0.001, -0.007, 0.039, -0.013 on day 

14 for 0g, 1g, 2g, 3g, 4g, 5 g respectively 

indicating inhibitory effects across all 

concentrations. Conversely, in Klin 

treatments (Figure 4), positive growth rates 

were observed across concentrations, with 

moderate fluctuations suggesting growth 

stimulation. 
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Figure 3: Growth rate of Chlorella vulgaris in Omo detergent 
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Figure 4: Growth rate of Chlorella vulgaris in Klin detergent 

Percentage inhibition values (Figures 5 and 

6) further confirmed the inhibitory effect of 

Omo and the stimulatory effect of Klin on 

Chlorella vulgaris. Omo treatment (Figure 5) 

resulted in notable growth inhibition at all 

concentrations, with the least inhibition at 2g 

(6.67 g/l). On the other hand, Klin exposure 

(Figure 6) led to negative percentage 

inhibition values, indicating enhanced algal 

growth at all tested concentrations. Omo 

exposure consistently inhibited Chlorella 

vulgaris growth, with reductions in biomass 

ranging from 20% to 45% depending on the 

concentration. Maximum inhibition was 

observed at 5g (16.6g/l). In contrast, Klin 

promoted algal growth, particularly at 2g 

(6.67g/l)–3g (10g/l), with biomass increases 

up to 25% above the control. 
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Figure 5: Percentage Growth inhibition of Chorella vulgaris in Omo detergent 
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Figure 6: Percentage Growth stimulation of Chorella vulgaris in Klin detergent 

DISCUSSION 

This study revealed significant differences in 

the growth responses of Chlorella vulgaris 

when exposed to two commonly used 

detergents, Omo and Klin. Omo consistently 

inhibited algal growth at all concentrations, 

while Klin promoted growth, suggesting 

contrasting ecological impacts. The 

inhibitory effect observed in Omo treatments 

aligns with previous reports indicating that 

certain detergent components, such as 

sodium aluminosilicate and sodium silicate, 

can disrupt algal cell membranes and 

metabolic functions (Aizdaicher and 

Markina, 2006; Pathusamy et al., 2013 

Kibuye et al., 2021; Binh et al., 2022; 

Sudibyo et al., 2023). Surfactants and 

additives in Omo may also reduce nutrient  

 

uptake or cause direct toxicity, leading to 

reduced biomass accumulation (Banks, et al., 

2015; Ryu and Spuller, 2021; Munoza et al., 

2022; Silva et al., 2024). In contrast, the 

growth stimulation observed in Klin 

treatments may be attributed to the presence 

of sodium tripolyphosphate (STPP), a known 

phosphorus source. Phosphorus is an 

essential macronutrient for algal growth, and 

its presence in detergents has been implicated 

in enhanced primary productivity and 

eutrophication (Agbazue et al., 2015; 

Barrante, 2015; Tahiluddin, 2023; Badamasi 

et al., 2019; Wurtsbaugh et al., 2019; Bossa 

et al., 2024; Ogwu, et al., 2025). The 

stimulatory effect of Klin observed in this 

study is consistent with previous findings that 
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low concentrations of phosphate-containing 

detergents can significantly boost algal 

biomass (Mustaffa et al., 2019; Mohsenpour 

et al., 2021; Olayemi 2021; Aulia et al., 2025; 

Li et al., 2025; Pavlíková et al., 2025). 

However, while Klin may enhance algal 

growth, its continued use and discharge into 

freshwater systems could contribute to 

nutrient loading, potentially triggering 

harmful algal blooms and oxygen depletion. 

Therefore, while Chlorella vulgaris 

demonstrated resilience and stimulatory 

responses in Klin-contaminated media, such 

growth must be monitored closely in natural 

settings to avoid ecological imbalance. The 

differential responses of Chlorella vulgaris to 

Omo and Klin highlight the importance of 

detergent composition in determining aquatic 

ecological outcomes. The study also 

underscores the potential of Chlorella 

vulgaris as a bio-indicator species and its 

possible utility in bioremediation strategies, 

particularly in environments impacted by 

phosphate-based pollutants. 

CONCLUSION 

Chlorella vulgaris displayed variable growth 

responses when exposed to Omo and Klin 

detergents. Omo consistently inhibited algal 

growth, while Klin stimulated it, likely due to 

phosphate content. These findings 

underscore the importance of detergent 

composition in aquatic toxicity and support 

the use of algae in pollution monitoring. 

Further studies are needed to evaluate other 

detergent brands, incorporate field studies, 

and assess long-term ecological 

consequences of detergent discharge in 

Nigerian water bodies. 
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